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Liquid crystalline elastomers (LCE) make
a remarkable class of materials. At their
inception in the 1980s,[1] LCE represented
a mere curiosity, but two events in the
early 1990s have turned LCE into one of
the hottest topics of international multi-
disciplinary research and development:
Finkelmann (in Germany) started working
with siloxanes, making the low glass tran-
sition elastomers (rubbery in the ‘human’
temperature range), and learned to make
monodomains [2] (large samples with uni-
formly aligned orientational anisotropy).
At the same time, Warner and Terentjev
have developed a complete theory of
LCE state and mechanics [3]. After this,
meaningful experiments on LCE with
controlled alignment became possible –
and the good theoretical understanding
of the processes guided these studies. As
a result, the field has ‘exploded’, and
today there are dozens of strong research
groups in EU, USA, Japan, China, Russia,
India, Brazil, Mexico, etc. publishing hun-
dreds of research papers a year. The 16th
biannual International Conference on LCE
took place in Houston, 2017, with several
hundred participants, with a programme
solidly focused on LCE applications.

One of the two key theoretical predic-
tions about LCE was their ‘equilibrium
actuation’ (the other being the ‘soft 
elasticity’: an equally remarkable topic,
also promising many unexpected applica-
tions). Finkelmann has soon confirmed

this effect [2,4], and then a systematic
study of Tajbakhsh and Terentjev [5] has
established how the degree of micro-
scopic polymer chain anisotropy affects
the spontaneous and fully reversible
change of sample length. This elongation
ratio L/L0 is called the ‘actuation stroke’,
and the illustration shows that it changes
continuously in proportion to the 
temperature change below the isotropic
transition point, with the maximum
stroke of 50% for the lowest curve – and
up to 250% for the highest curve (the
materials in that study [5] differed in the
fraction of added main-chain polymer,
increasing the average local anisotropy;
this change also shifts the isotropic tran-
sition point). In order to evaluate
mechanical work done by such an actua-
tion cycle (heating-cooling in this case),
there has to be a load (stress) applied,
and the illustration shows one represen-
tative LCE doing mechanical work of
~150 kJ/m3 per unit volume (evaluating
the full work would be misleading,
because W=force*displacement, and the
displacement depends on how long the
initial sample was: you can have as large
work W as you want by lifting the same
weight by a longer strip of LCE). Our long
experience with LCE tells that these
materials can only withstand the maxi-
mum stress of ~100 kPa before breaking
(both in tension and in compression), so
the maximum mechanical work per unit
volume cannot exceed ~50 kJ/m3 for an

elastomer with a 50% actuation stroke as
an illustration. It is important to empha-
size the equilibrium nature of LCE actua-
tion: it is the natural length of the sample
that is changing, and so the process can
repeat over as many cycles as needed –
it is only the applied load that may lead
to degradation. 
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It is also important to note that the
majority of modern literature on LCE
actuation is focused on bending (rather
than linear tensile tests described above).
For the simple reason: in bending, when
one side of the sample contracts with
respect to the opposite, one can achieve
a very large amplitude of motion by very
little input; the mechanical work in such
a bending cycle would be close to zero.
So many spectacular results on bending
actuation [6] are perhaps interesting for
signal guidance, or surface reflectance –
but certainly not for any mechanical
application. 

The Warner-Terentjev theory makes it
clear that the reason for mechanical 
actuation is the change in the orienta-
tional order of molecules, which are 
well-aligned (monodomain) and are
crosslinked into a dense network. Both
Finkelmann and Terentjev have quickly
realised that one can change this order
not just by changing the ambient temper-
ature (as people do in ordinary liquid
crystals), but also by light – if the
molecules making the network contain

photo-responsive groups [7]. This started
a new wave of excitement in LCE actua-
tors: now you could induce a large
mechanical action fast, and without 
contact, just by shining a light on the
elastomer [6,8]. There are two mechanisms
behind photo-actuation: a direct release
of heat on light absorption, which causes
local change of orientational ordering for
entropic reasons – and a more delicate
effect when the photo-absorbing molecule
is an anisotropic rod itself, and undergoes
photo-isomerisation disrupting local 
orientational anisotropy (azobenzene
derivatives) by altering the potential
energy of anisotropic interaction. Initially
the two were confused, but later these
mechanisms were clearly separated [9],
and now a much preferred (far more
robust) method is the first: one can select 
specific dyes that are more efficient in
releasing heat, and absorb in a required
spectrum range, and disperse them in the
LCE actuator to enable its photo-
response. Our long experience shows
that carbon nanotubes and graphene
nanoplatelets are the best in converting
broad-spectrum light into local heat –
while the laser welding dyes like isocya-
nine green are best to convert narrow-
band near-infrared light into high local
heat [10] (while azobenzene derivatives
have a narrow-band UV absorption [7]).
The illustration (data from [10]) shows the
‘light ON’ – ‘light OFF’ cycles on a typical
LCE doped with a standard commercial
dye (not optimised for the photo-actua-
tion), pointing the repeatability of
response, and the dependence on light
intensity. The speed of response has
been shown to be determined by the rate
of absorption saturation in a material
(faster in thinner samples), and could be
made to fractions of a second. 

The speed of actuation response, the
magnitude of actuation stress (on length-
fixed sample) and the stress-strain-power
values make LCE the material that
matches the human muscle parameters
almost exactly. The illustration of ‘Actua-
tion Map’ (from a review [11]) shows where

the range of LCE actuators sits compar-
ing to many other systems used in 
technology. The ability to initiate the
mechanical action by light adds to the
attractiveness of the material; other 
stimuli (i.e. methods of changing the local
orientational order) have also been
demonstrated – by solvent intake or by
magnetic heating when ferrous nanopar-
ticles are dispersed. However, all these
effects rely on the fact that LCE is
formed as a monodomain – and since
Finkelmann’s work there is no other prac-
tical method to form a uniformly aligned
crosslinked elastomer than by his two-
step crosslinking process [2,4]. 

The two-step crosslinking-alignment 
process relies on the separation of time
scales. Once the polymer solution is pre-
pared, crosslinking is initiated and the
system is allowed to form a weak gel.
Once in this state, a mechanical deforma-
tion is applied (usually a uniaxial tensile
stress), during which the polymer chains
that are already crosslinked develop a
specific uniform stress-induced anisotropy.
At this point the final full crosslinking is
applied ‘freezing’ this anisotropy in the
network. Unfortunately, this two-step
process fundamentally cannot produce
anything except a flat strip (or a thick
fibre): the weak gel at the first stage does
not permit complex shape formation – if
that first stage is carried to a stronger gel,
then no good LCE alignment and actua-
tion can occur, because it is the non-
crosslinked chains that will be made in
anisotropic conditions and lead to the
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final order and actuation. This ‘bottle-
neck’ is the reason why there are no
spectacular applications of LCE on the
market. This is where the field is now:
LCE offer a great promise, remarkable
opportunities – yet for a technical reason
their best applications remain practically
non-viable. 

The APRA project aims to change this
status quo, and open the road for these
new applications.

We always understood that an alterna-
tive solution to the ‘two-step crosslink-
ing’ protocol was needed, which could
only come from a concept of thermoplastic
elastomers: networks that are crosslinked
dynamically and that could be re-
moulded at a high temperature into com-
plex shapes. All modern polymer industry
uses this thermoplastic concept: from
shoes to aircraft. We have tried many
things over many years, and grew to
understand that it cannot work. The
reason is that for actuation we need to
release a lot of heat internally, which
inevitably disrupts the thermoplastic
matrix and undermines the mechanical
strength of the material: fundamentally
such actuators will show creep after
many cycles. 

So when Ludwick Leibler (ESPCI, Paris) has
announced their new idea of vitrimers [12],
we knew this is our ‘ticket’. Unlike in
usual thermoplastic networks, which
have their dynamic crosslinking increas-
ingly disrupted on heating, in a vitrimer
the number of covalent bonds holding
the network together remains constant
at all times. But the rate of a bond-
exchange reaction (BER) increases on
heating, in a very sharp manner since
high energy barriers are involved, which
allows the material to become malleable:
easy to pressure mould above the ‘vitri-
fication temperature’ Tv (which is often
130-180ºC or could be higher). Yet the

differential stiffness and the structural
integrity are not compromised, since the
crosslinking bonds exchange their con-
nectivity, but do not reduce in number.
We followed Leibler’s ideas and formed
such BER polymer networks with liquid-
crystalline (rod-like) molecules – and
named these liquid crystalline vitrimers
xLCE, for ‘exchangeable LCE’ [13]. 

Project objectives are divided into two
distinct parts: Part A is the chemistry-led
element, where we will work to optimise
the new xLCE structure for each target
application. It needs a lot of innovation in
itself, and several major challenges to
face, but its ultimate role is to provide a
sufficient amount of photo-actuating
xLCE material with required parameters
for the use in target applications. Part B
is the device-engineering element of this
project. There are several different rep-
resentative applications, which form the
five tasks of Part B – yet it is likely that in
the course of this project new ideas
would turn up, internally or from outside,
and we will do something else as well. 
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This project will bridge from the concept to
technology, tuning the material design for
robust nematic LCE vitrimers, imparting
photo-actuation capacity with a controlled
wavelength, and finally utilising them in
practical-engineering actuator applications
where the reversible mechanical action is
stimulated by light, solvent exposure, or
more traditionally – heat.
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