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Figure 1: Conceptual representation of the 
three methodological approaches pursued in 
IntelliAQ. Top: time series forecasting, centre: 
spatial interpolation (mapping), and bottom: 
the application of advanced video prediction 
models to capture spatial and temporal 
patterns.

Artificial intelligence (AI) is experiencing a wave of enthusiasm 
since ground-breaking results have been published on 
cognitive problems such as image and speech recognition, 
automated language translation, robotics, and strategic games. 

This has become possible because 
of recent advances in massive data 
processing capabilities (‘big data’) and 
the development of deep learning (DL) 
neural network architectures, which 
‘learn’ millions of parameters. Even 
though machine learning, in general, has 
been in use for many years, the uptake 
of DL in environmental science has been 
slow, and IntelliAQ is one of the first 
projects in the atmospheric sciences to 
fully embrace the potential of modern big 
data processing and DL. IntelliAQ aims at 
shifting the analysis of global air pollutant 
observations to a new level and will 
provide a basis for the future development 
of innovative air quality services with a 
robust scientific underpinning.

Since the start of the IntelliAQ project 
in 2018, the development of machine 
learning solutions in all areas of 
environmental sciences has exploded. 
Long-term doubts that deep neural 
networks might not be able to faithfully 
represent the complex, multi-dimensional 
and multi-scale patterns embedded in 
environmental data have been replaced 
with a cautious optimism inspired by 
recent breakthroughs, especially in the 
area of weather forecasting (e.g. Scher & 
Messori, 2019; Weyn, Durran & Caruana, 
2020). Numerous studies are exploring 
state-of-the-art machine learning 
techniques for analysing weather and 
climate data (e.g. Callaghan et al., 2021) or 
developing new approaches to weather 
forecasting (e.g. Gong et al., 2021, 
submitted). In a recent position paper, my 
team and I tried to connect the state-of-
the-art in meteorological forecasting with 
the state-of-the-art machine learning and 
asked the question, “Can deep learning 
beat numerical weather prediction?” 
(Schultz et al., 2021).  

Air pollution is in many ways closely 
related to weather. From a data science 
perspective, both applications deal 
with spatiotemporal patterns and non-
Gaussian data distributions, and the 
geometries and formats of meteorological 
and air pollution datasets are quite similar. 
Air quality is determined by several 
factors, including air pollutant emissions, 
chemical transformations, transport 
processes and weather. To analyse and 
understand air quality data and assess 

changes in air pollution levels, all of these 
factors must be taken into account. Air 
pollutant concentrations exhibit complex, 
time-dependent spatial patterns. 
Therefore, complex DL architectures 
and comprehensive datasets are needed 
when we want to use AI for the analysis of 
air quality and build air quality predictions 
based on modern machine learning. 
Furthermore, it is important to evaluate 
the machine learning results with proper 
statistical metrics. Meteorologists have 
developed a large arsenal of suitable 
metrics that differ from the standard 
evaluations applied in classical machine 
learning applications such as language or 
image processing.

The IntelliAQ project has positioned itself 
at the forefront of deep learning for the 
analysis of air quality information on the 
global scale. Specifically, IntelliAQ has 
three main objectives:

1.	 to develop novel spatial and temporal 
interpolation methods using deep 
neural networks in order to expand 
the coverage of historic and recent 
data while preserving fine-scale 
structures down to the street level

2.	 to develop an innovative air quality 
forecasting concept based on deep 
learning

3.	 to explore the use of deep neural 
networks to assess the quality of air 
pollution data and establish new, 
robust techniques for automated 
outlier detection and data screening. 

Our research has primarily addressed 
tropospheric ozone, which is the second 
most important air pollutant with adverse 
impacts on human health (WHO, 2021), 
vegetation (e.g. Unger et al., 2020) and 
climate (IPCC, 2021). A central asset 
of the project is the world’s largest 
collection of ground-level ozone data 
in the database of the Tropospheric 
Ozone Assessment Report hosted at 
the Jülich Supercomputing Centre, 
the home of IntelliAQ (Schultz et al., 
2017). To account for the complexity 
of the multi-scale spatial and temporal 
interactions of tropospheric ozone, we 
have structured our research according 
to three main conceptual lines (Figure 1). 
In the following, I will summarise what 
we achieved in each of these areas. To 

conclude, I will then provide a glimpse 
into our plans to bring these three lines 
together and build one large, coherent 
analysis and forecasting system for 
tropospheric ozone during the remaining 
21 months of the project.
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Time series analysis

In light of the scattered geographic 
locations of air quality measurement 
sites and the available multi-variate 
long-term observation series from the 
TOAR database, the analysis of time 
series data, and specifically the attempt 
to forecast ozone concentrations with 
neural networks, appeared a natural first 
choice when the IntelliAQ project began. 
We explored different machine learning 
concepts and have investigated several 
strategies for the preparation of input 
data to test the limits of a purely data-
driven approach for this task. 

Kleinert et al. (2021) used an inception 
block architecture and trained a single 
neural network with ten years of daily 
observations from around 300 German 
air quality monitoring sites to forecast 
daily maximum eight-hour average 
ozone concentrations over four days 
into the future. The model made use 
of information from nine variables 
(three chemical and six meteorological 
parameters) and showed very good 
generalisation and reasonable forecast 
skill. It clearly outperformed a simple 
ordinary least square regression model, a 

persistence forecast and a climatological 
forecast. At the time of publication, this 
was the largest neural network that 
has been trained with air quality data. 
However, some deficits of the neural 
network became apparent, namely the 
strong reduction of forecast quality after 
two days and the over-emphasis of ozone 
concentrations near average values. The 
latter implied that peak air pollution 
would rarely be predicted correctly. 

To improve on the achievable forecast 
length, Leufen, Kleinert and Schultz  
(2021, submitted) explored the use of 
time filters and hourly observations 
as inputs, which yielded a substantial 
improvement (Figure 2). Kleinert et al. 
(manuscript in preparation) looked at ways 
to incorporate upstream information 
from sites that have seen the same air 
mass earlier. They developed a wind 
sector approach. This was first tested on 
gridded data from a chemistry transport 
model to avoid extra complications 
when dealing with irregularly spaced 
and missing data values. The sector 
approach also led to improved forecasts 
over a longer period. Finally, a master 
thesis tested the use of oversampling 
approaches to better capture extreme 

fields yielded unsatisfactory results. 
The resulting fields looked rather blurry, 
and important features (i.e. gradients 
in the data) were lost. This has led 
to the adoption of generator models 
(Goodfellow et al., 2014), which draw 
samples from a learned distribution and 
can therefore produce sharp and realistic 
looking images. 

In Gong et al. (2021, submitted), we 
explored a combination of GANs with a 
variational autoencoder model (SAVP, Lee 
et al., 2018) for use as a meteorological 
forecasting model. The model was 
trained on 11 years of reanalysis data 
and generated skilful predictions of the 
2-metre temperature over Europe over 12 
hours. Even though the model was only 
trained with temperature at two metres 
and at 850 hPa, it clearly outperformed a 
simpler convolutional LSTM model and 
a persistence forecast. However, the 
SAVP model exhibited some difficulties 
in correctly predicting the temperatures 
over mountains, and the model error is 
still substantially larger than that of state-
of-the-art weather prediction models. We 
expect that additional input variables and 
an embedding of the surface orography 
would lead to improved forecasts, but 
to beat numerical weather prediction, 
one would also have to find ways to 
incorporate some physical knowledge 
into the machine learning tools.

Synthesis

The different deep learning approaches 
described above have led to valuable 
insights with respect to the preparation of 
input data, the strengths and weaknesses 
of different deep learning architectures 
and the technical hurdles to implement 
and train complex deep learning models 
on high-end supercomputer systems. 
The ultimate goal of the IntelliAQ project 
is to design a deep learning model 
which can either generate trustworthy 
maps of global air pollution based on 
the heterogeneous and scattered data 
that are available or produce skilful 
forecasts of air pollutant concentrations 
over several days. It appears that so-
called transformer models (e.g. Vaswani 
et al., 2017; Dosovitskiy et al., 2020) 
could be trained to learn spatiotemporal 
representations of atmospheric data 
and then be employed in various ways 
to accomplish the interpolation and 
forecasting tasks that were defined 
in the IntelliAQ proposal. Such 
transformer models belong to the class of 
unsupervised machine learning systems, 
and they require substantial skill and 
computing power to achieve competitive 
results. We accept the challenge and 
hope that we can bring deep learning for 
air quality to a level where it outperforms 
state-of-the-art chemistry transport 
models in a variety of applications.

Figure 3: High-resolution map of annual mean ozone concentrations estimated based on the 
spatial mapping of several geospatial datasets to ozone concentrations measured at several 
thousands of stations. Grey areas are regions where explainable AI techniques indicated too little 
confidence in the extrapolation results. Figure from Betancourt et al., manuscript in preparation.

Figure 2: Error metrics (mean squared error) of different neural network and reference models 
predicting the daily maximum 8-hour ozone average concentrations at 32 air quality monitoring 
sites in Northern Germany (training was performed on the data from 55 sites). Lower MSE values 
are better. The top four boxes and whiskers are results from a model with time filtering. OLS is a 
linear least square model and IntelliO3-ts-v1 is the original model described in Kleinert, Leufen and 
Schultz  (2021). FCN-512/32 is a feed forward network without time filtering and Persistence is a 
persistence forecast, simply repeating the last values. Figure from Leufen, Kleinert & Schultz, 2021, 
submitted.

values in the ozone prediction. This had 
mixed success because the better hit rate 
of air quality threshold exceedances was 
paid with increased bias and false alarms. 

A user-friendly, adaptable software tool 
for time series forecasting through deep 
learning was developed and published 
together with the source code (Leufen, 
Kleinert & Schultz, 2021). Future work 
on time series forecasting will look into 
making use of meteorological predictions 
(instead of prescribing only data until 
‘now’) and of a rich variety of geospatial 
data that has been exploited in the spatial 
mapping approach described next.

Mapping
 
Here, we tested the use of a wide 
variety of freely available geospatial 
datasets (e.g. population density, 
digital elevation models, nighttime light 
intensity, landcover classes) to infer 
annual ozone average concentrations 
at locations without monitoring sites. 
A novel mapping method based on 
random forests has been developed, 
where the high-resolution geospatial 
datasets serve as predictors for the air 
quality metrics calculated from the TOAR 
database (Betancourt et al., 2021). The 
study showed that about 60 per cent of 
the ozone variability can be explained by 
the geospatial predictors. In a follow-up 
study (Betancourt et al., in preparation), 
the mapping approach was extended 
across the whole globe (Figure 3). 
Recent techniques which make machine 
learning explainable (e.g. Lundberg & Lee, 
2017; Meyer & Pebesma, 2020) were 
employed and further improved to assess 
the robustness and credibility of the 
generated global ozone concentration 
maps. The combination of these 
techniques is unique and can serve as a 
blueprint for future mapping studies with 
machine learning, which are not limited 
to air quality-related topics (Stadtler et 
al., 2021, submitted).

Video prediction
Initial attempts to apply relatively 
simple video prediction methods based 
on convolutional neural networks to 
forecasting spatiotemporal weather References click here
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