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big data

Recent years have 
seen a boom in the 
application of statistical 
and machine learning 
methods in science and 
in our everyday life. But 
to what extent can we 
rely on them? My ERC 
project, BigBayesUQ, 
aims to derive 
theoretical guarantees 
and limitations for 
modern learning 
approaches in complex 
mathematical models.
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images, which couldn’t even be detected 
by human eyes (Chatel, 2019), or unusual 
positions of the objects (Alcorn et al., 2019) 
could result in completely inaccurate 
classifications leading to wrong diagnosis 
or incorrect detection of objects. One 
essential aspect is understanding how 
much we can rely on the derived results. 
In more formal terminology, it is necessary 
to correctly assess the uncertainty of the 
procedure, which is based on noisy, real-
world data, so can never be perfect. 

A principled way of obtaining uncertainty 
quantification is by using Bayesian 
methods. Bayesian statistics provides 
a natural way of incorporating expert 
knowledge into the model in a probabilistic 
way. More concretely, based on experience, 
the expert can assess that certain 
parameter values are more likely than 
others. This probabilistic interpretation 
can be formalised by introducing a prior 
distribution representing the initial belief 
of the user. Then, after observing the 
data, this belief is updated by the new 
information resulting in the so-called 
posterior distribution, which presents a 
more accurate description of the problem 
driven by the data. This probabilistic 
statement about the likeliness of the 

parameter values in the model provides a 
natural way of quantifying the uncertainty 
of the procedure. 

Bayesian statistics is becoming 
increasingly popular in a wide range of 
applications, including epidemiology, 
astronomy, environmental and earth 
sciences, machine learning and artificial 
intelligence. For a concrete example, in 
natural language processing, chatbots 
provide a list of the most likely next word 
in a text and choose from them randomly 
(Naïve Bayes classifier algorithm). Or a 
Bayesian approach was used to find the 
black box of the crashed Air France flight 
447 (Chatel, 2019) after all other standard 
approaches failed (see Figure 1). 

However, Bayesian methods for 
complex, high-dimensional, large data 
sets are (typically) computationally 
very demanding. This has given rise to 
various approximation approaches to 
speed up the procedure. These methods 

trade off accuracy to gain computational 
efficiency. Yet they typically have very 
limited theoretical underpinning; hence 
we cannot know if they are working 
properly. It has been shown, empirically 
and theoretically, that many of them 
can provide overconfident and wrong 
results. For instance, it was pointed out by 
Ezquiaga and Zumalacárregui (2018) that 
using different scalable Bayesian methods 
(corresponding to different astronomical 
models) can result in contradictory 
estimations for the Hubble constant 
(describing the expansion rate of the 
universe), as shown in Figure 2. 

Whether the applied statistical techniques 
or the underlying astronomical models 
were incorrect is unclear. To answer such 
questions and to reliably use approximate 
Bayesian methods in a wide range of 
applications, it is essential to understand 
their theoretical behaviour. My research 
focuses on the mathematical description 
of such modern statistical and machine 

Figure 1: Bayesian uncertainty quantification for 
the location of the back box of Air France flight 447 
after its accident in 2009, see (Stone et al., 2014). 
Red denotes high probability in the heatmap. The 
arrow shows the actual location where it was found.

Real-world phenomena are often 
described by complex mathematical 
models. For example, in astronomy, the 
path of light from distant galaxies to us 
is described by complex mathematical 
formulas (PDE systems), which can then 
be used to understand how fast the 
universe is expanding or the proportion 
of dark matter in the universe. As another 
example, novel image recognition methods 
are being developed for self-driving 
cars. The observed data are, however, 
never perfectly clean or accurate, often 
containing measurement and other errors 
making the analysis even more difficult. 
Statistics is the science of analysing and 
interpreting such noisy, imperfect data, 
and it plays a leading role in all modern 
data-centric developments.

In recent years the amount of available 
information has increased substantially, 
and the models describing real-world 
phenomena are becoming increasingly 
complex. These introduce new challenges 

for scientists since, despite the ever-
increasing power of computers, the 
computational complexity in certain fields 
of applications has become overly large, 
making it impractical or even impossible 
to carry them out in a reasonable amount 
of time (or memory requirement). 

Protecting the privacy of individuals is also 
becoming more pronounced. Therefore, 
novel, modern statistical and machine 
learning methods are continuously 
developed to speed up computation using 
simplified models and computational 
shortcuts. However, these methods 
are often used as black-box procedures 
without rigorous mathematical 
understanding. This could result in 
misleading and wrong answers without 
us even realising it. A particular example 
is neural networks, with state-of-the-art 
approaches for image classification with 
applications ranging from medical imaging 
to self-driving cars. However, it was 
shown that minor changes in the input 

Figure 2: The Hubble tension. Approximate Bayesian methods provide contradictory forecasts for the Hubble 
constant. The proposed range of plausible values is disjointed, i.e. the blue, green and red intervals do not 
intersect (Ezquiaga and Zumalacárregui, 2018).
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learning methods (with a particular focus 
on Bayesian statistical approaches) in 
the context of mathematical models 
motivated by real-world applications. 
I will investigate two state-of-the-
art approaches: distributed (parallel) 
computing and variational inference 
methods.

In distributed computational 
architectures, the data are split 
amongst different cores/machines and 
computations are carried out locally, in 
parallel to each other. The outcomes of 
these local computations are transmitted 
to a central core/machine, where they 
are aggregated into a final result; see 
Figure 3 for a schematic representation. 
The computational bottleneck of 
such approaches is typically the 
communication between the servers; 
hence, the information transmission is 
restricted to make them computationally 

attractive. Besides the straightforward 
computational and data storage 
advantages, distributed methods can be 
used for privacy protection where storing 
all sensitive data in a central database 
(e.g. medical or financial information) is 
undesirable. Although these methods 
were extensively studied in the computer 
science and electrical engineering 
literature, the focus has been mainly 
on simple, low dimensional models, 
and we have scarcely any theoretical 
understanding of these methods in more 
complex, modern statistical problems, for 
some first results and references therein 
see (Szabo and Zanten, 2019). One 
particularly important and increasingly 
popular problem is federated learning, 
where the machine learning models 
are trained in a decentralised fashion 
considering specific network topologies.
The variational Bayesian method 

approximates the complex posterior 
by a simpler probability distribution. 
This simple distribution is chosen from 
a pre-specified set of distributions 
using optimisation approaches. There 
is a clear trade-off in the procedure. 
On the one hand, a smaller set of 
possible distributions will speed up 
the optimisation method and make the 
model easier to interpret. Still, on the 
other hand, it will provide less accurate 
approximations. Variational Bayesian 
methods are routinely used in all fields 
of science; for instance, Bayesian deep 
learning or real-time image segmentation 
and classification wouldn’t be possible 
due to the high computational costs 
without applying variational methods. 
To understand how much we can rely 
on the variational method, we have to 
quantify the information loss occurring 
in this approximation procedure (Ray and 
Szabo, 2022).

Figure 3: Distributed learning architecture. The computations are carried out locally on many devices, and only a summary 
is transmitted to the central server/device. The communication between the devices/servers is often limited.
Credit: @MarcTOK

Understanding the theoretical 
(mathematical) properties of these state-
of-the-art approaches provides us with a 
principled way of further improving their 
accuracy and eventually relying on the 
derived results. The main focus of my 
work is on mathematical statistics and 
its intersection with machine learning, 
information theory and numerical 
analysis. The investigated theoretical 
questions are emerging from practice, 
and occasionally I am also involved in 
concrete applied projects. I work closely 
with scientists at the Psychology Institute 
of Leiden University on developing 
machine learning methods for the 
early detection of Alzheimer’s disease 
(see a more detailed description in the 
following paragraph), and I am in contact 
with researchers at Leiden Observatory 
aiming to develop new statistical tools 
for understanding and answering 
fundamental questions in astronomy.

In medical research, different data types 
are collected and combined to provide 

the best diagnosis. For instance, for 
early diagnosis of Alzheimer’s disease, 
structural and functional MRI data, 
questionnaire data, EEG data, genetic 
data, metabolomics data,… etc. can be 
collected. These data are substantially 
different both in overall size and quality. 
To achieve the most accurate early 
diagnosis, one should find the most 
important features in these data sets 
and combine them in an optimal way. 
Furthermore, since these diagnostic 
tools can be expensive and of limited 
capacity, selecting the most relevant 
ones is important to achieve a reliable, 
accurate and cost-effective diagnostic 
method. We have developed a learning 
approach called stacked penalised logistic 
regression (StaPLR), which selects the 
most relevant diagnostic tools and the 
corresponding most relevant features 
for predicting to early onset of dementia. 
This method was successfully applied 
to clinical data containing patients with 
Alzheimer’s disease and a control group 
(van Loon et al., 2022).
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methods are being developed to process 
the ever-increasing amount of available 
information. However, these methods often 
behave like black-box procedures without 
any theoretical underpinning. In this 
project, I will derive theoretical guarantees 
but also limitations of such procedures and, 
based on their mathematical understanding, 
increase their accuracy in complex models.
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