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“Most of our current neural networks are 
still much too far away from the structures 
of brain-immanent networks.”
Professor Thomas Wennekers, Plymouth University

Material constraints 
enabling human 
cognition Developing neural 

networks to unlock 
the secrets of 
human cognition.

Why can we develop vocabularies 
consisting of tens of hundreds of 
thousands of words, yet our closest 
evolutionary relatives typically manage 
fewer than 100? This is just one of the 
vital, long-standing questions in cognitive 
science, linguistics and philosophy is set 
to tackle.

• How can humans build vocabularies 
of tens and hundreds of thousands 
of words, whereas our closest 
evolutionary relatives typically use 
fewer than 100? 

• How is semantic meaning 
implemented for gestures and words, 
and, more specifically, for referential 
and categorical terms? 

• How can grounding and interpretability 
of abstract symbols be anchored 
biologically?

• Which features of connectivity 
between nerve cells are crucial for the 
formation of discrete representations 
and categorical combination?

• Would modelling of cognitive functions 
using brain-constrained networks 
allow for better predictions on brain 
activity indexing the processing of 
signs and their meaning?

To find new answers to these questions, 
the MatCo project is utilising novel 
insights from human neurobiology and 
plans to translate these insights into 
mathematically exact computational 
models—neural network models. 

The cognitive capacities of humans 
and higher mammals—their ability to 
learn, think, experience and sense—
may depend on their brains’ specific 
structural and functional features. If so, 
these neurobiological features must play 
a decisive role in explaining cognitive 
capacities. 

Despite substantial progress in 
understanding brain function in general, 
explaining how structural and functional 
features of neural tissue bring about 
cognition, language and thought has 
remained a challenge. 

Neural network models

Neural network models are potential 
tools for improving our understanding of 
complex brain functions. 

A neural network is a network of 
interconnected neurone-like devices 
whose connections vary widely. 
Depending on the purpose of the 
simulation, they may be used to analyse 
a ‘data set’ using a process that imitates 
biological neurons signalling to each 
other, providing us with a simplified 
model of the human brain processing 
information.

To unlock the secrets of cognition, 
these models must be neurobiologically 
realistic. Despite neural networks 
advancing dramatically in recent 
years and even achieving human-like 
performance on complex perceptual 
and cognitive tasks, their similarity to 
aspects of brain anatomy and physiology 
is imperfect.

The MatCo team propose that neural 
networks for modelling cognition 
must incorporate a broad range of 
features that make them similar to real 
neurobiological networks at different 
levels: the microscopic level of nerve 
cell function, the mesoscopic level of 
interactions in local neuron clusters 
and the macroscopic level of interplay 
between these clusters and even larger 
brain parts and the whole brain.

Neural models of  
cognition explored 

In their paper, ‘Biological constraints 
on neural network models of cognitive 
function’ (Pulvermüller et al., 2021), 
featured in Nature Reviews Neuroscience, 
MatCo explore the different types of 
neural models of cognition and provide 
insight into how the biological plausibility 
of those models can be improved, i.e. how 
they can more closely mimic the functions 

within the human brain. Alongside the 
models themselves, MatCo has also 
identified a number of constraints that 
need to be applied to the models, as well 
as exciting future clinical applications of 
brain-constrained modelling.

Brain constraints
While increasing the neurobiological 
realism of the neural models is an important 
first step, a second crucial process is 
applying neuroscience constraints at 
different levels—the micro, meso- and 
macroscopic levels of description.

The novel proposed approach of ‘brain-
constrained’ neural modelling aims 
at making ‘neural’ networks more 
neurobiologically plausible. The following 
seven subsections each deal with one 
specific aspect under which artificial 
neural models need to become more 
similar to real brains.

Integration at different levels

Previous modelling has mostly aimed to 
approximate neuronal function at the 
level of either single neurons (Gerstner 
and Naud, 2009; Teeter et al., 2018), 
neuronal interaction in local cortical 
circuits (Schwalger, Deger and Gerstner, 
2017; Malagarriga, Pons and Villa, 
2019; Jansen and Rit, 1995; Potjans 
and Diesmann, 2014) or global interplay 
between cortical areas. To simultaneously 
apply constraints at different brain 
structure and function levels, these 
different levels must be addressed and 
integrated into a single model. 

Neuron models

The functional units of the cortex and 
brain are neurons. All neural networks 
are composed of artificial correlates of 
neurons, but the level of detail with which 
neuronal function is simulated varies 
considerably (Gerstner and Naud, 2009; 
Teeter et al., 2018; O'Reilly, Munakata 
and McClelland, 2000). 
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“Models that bridge the gap between the 
microscopic and macroscopic scales are a 
valuable resource in neuroscience.”
Professor Friedemann Pulvermüller, Freie Universität Berlin.

The most detailed neuron model is 
not always the best choice for a given 
research question. While relatively 
basic neuron models yield excellent 
descriptions of neuronal activity 
(Gerstner and Naud, 2009), the greater 
computational resources required by 
sophisticated neuron models currently 
limit their applicability to large-scale 
simulations of within-area and across-
area interactions relevant to cognition.

Synaptic plasticity  
and learning

The inclusion of learning mechanisms is a 
crucial ingredient of biologically plausible 
networks. However, localist and whole-
brain models typically lack this feature. 
To model multiple learning systems in 
the brain, the implementation of both 
major forms of learning, supervised and 
unsupervised, is crucial. 

Supervised learning presents a challenge—
it requires feedback that informs the 
individual or network whether the 
performance was appropriate, wrong 
or erroneous. The choice of algorithms 
used in supervised learning simulations 
has been guided not only by biological 
plausibility (O'Reilly, 1998; Mollick, 2020) 
but also by the computational efficacy of 
gradient-dependent learning (Rumelhart, 
Hinton and Williams, 1986; Richards et 
al., 2019; LeCun, Bengio and Hinton, 
2015). Whether these latter algorithms 
are biologically realistic and applicable to 
sophisticated learning in specific cognitive 
areas is controversial. 

Explicit feedback is important in some 
types of learning (such as reinforcement 
learning), and its biologically realistic 
implementation is crucial (O'Reilly, 1998; 
Cazin et al., 2019; Mollick, 2020).

Inhibition and regulation

Brains are regulated systems. Cortical 
activity controls reasoning, emotion, 
thought, memory, language and 
consciousness and is regulated by control 
mechanisms at different levels. These 
include the microscopic local circuit 
level and the macroscopic, more global 
level of interacting brain parts, where 
cortical activity is regulated through 
information exchange with the thalamus, 
basal ganglia and other subcortical 
structures (Braitenberg, 1978; Yuille and 
Geiger, 2003; Gurney et al., 2004). Many 
distributed neural networks simulating 
cognition are composed only of 
excitatory units, and they lack inhibition 
mechanisms (Schmidt et al., 2018). 

Inclusion of inhibition and regulation 
mechanisms at the local and more global 
levels is an important feature of making 
neurocognitive networks biologically 
plausible. Inhibitory neurons stop or 
restrain excitatory neurons from firing, 
providing gaps in activity. Without 
inhibition, the firing of neurons is 
ceaseless and disorganised. The rhythmic 
stop and start of electrical activity in the 
brain results in brain waves. Without 
a fine balance between this ‘on and 
off’ activity, brain waves become less 
coherent; a phenomena witnessed in 
psychiatric diseases, e.g. schizophrenia.

Area structure

The cortex is structured into a set of 
areas. Area definition is primarily based 
on anatomical criteria and sometimes 
refined using functional information. 
Depending on the question to be 
addressed by a simulation, a network 
model may implement one, a specific 
selection of or all cortical areas along with 

subcortical nuclei. Each area or nucleus 
can be realised as a separate ‘layer’ 
or model area, including a predefined 
number of artificial neurons. Dimensions 
of progressing towards biological 
realism include the range of brain parts 
and regions covered by the model. In 
the networks modelling language and 
conceptual processing, it is important to 
model a range of cortical areas known to 
be relevant for language and meaning.

Within-area local 
connectivity

Pyramidal cells are the most common 
excitatory neurons in the cortex. One of 
these cells may make contact with a few 
tens of thousands of other cortical cells 
within a pool of 15–32 billion neurons in 
the human cortex overall (Haug, 1987). 
Neuroanatomical studies indicate that 
local excitatory connections within 
a cortical area are sparse and show 
a neighbourhood bias towards links 
between adjacent neurons (Braitenberg 
and Schüz, 1998; Kaas, 1997).

Many networks that include auto-
associative layers or areas (Willshaw, 
Buneman and Longuet-Higgins, 1969; 
Palm, 1982; Hinton and Shallice, 1991; 
Hopfield and Tank, 1985) include full 
connectivity between all neurons 
within these areas, which is not in line 
with the sparseness of intrinsic local 
cortical connections identified in the 
neuroanatomical studies. Hetero-
associative networks lack the within-layer 
connections identified and, therefore do 
not seem biologically realistic either. 

The brain constraint of sparse, local 
and partly random connections with a 
neighbourhood bias has been realised 
in some neural networks. Nonetheless, 

for most neural networks available 
today, the implementation of within-area 
connectivity constraints still leads to an 
increase in biological realism (van Albada 
et al., 2020).

Between-area global 
connectivity

The connections between areas of the 
cortex follow some general rules. Most 
links are reciprocal. Adjacent areas are 
almost always interlinked, and second-
next neighbours are connected in many 
cases (Braitenberg and Schüz, 1998; 
Young, Scannell, and Burns, 1995). 
However, longer-distance links are 
sparser, and much effort has been spent 
mapping them precisely using invasive 
and non-invasive techniques (van 
Albada et al., 2020; Eichert et al., 2019; 
Rojkova, 2016; Fernández-Miranda et 
al., 2015, Rilling, 2014; Petrides et al., 
2012; (de Schotten et al., 2012; Ardesch 
et al., 2019; Barbeau, Descoteaux, and 
Petrides, 2020). 

If two areas are interlinked, their 
connections are, in most cases, reciprocal 
and show topographic projections and 
local neighbouring relationships are 
preserved. Between-area connections 
are carried by long axon branches of 
cortical pyramidal cells. These axon 
branches pass through the white matter 
and can reach neurons in distant areas, 
where they branch and make contact 
with a local neighbourhood of neurons. 

Essential brain constraints on artificial 
neural networks come from the 
connectivity structure of between-area 
links, as documented by neuroanatomical 
research.

Conclusion 

The MatCo project targets novel biological 
explanations of specifically human 
cognitive and language abilities based on 
neurocomputational network simulations 
with networks similar to the structure 
and function of the relevant brain parts. 
Similarity between brains and networks 
needs to be constrained in at least seven 
ways, as discussed in the preceding 

subsections. By engineering cognitive 
mechanisms in a brain-constrained 
environment, the mechanisms underlying 
symbol learning, meaning acquisition, 
combinatorial learning and conceptual 
thought may become more graspable for 
human minds.

MatCo suggests a move towards more 
biologically oriented modelling, where 
neuroscience constraints have priority 
over other aims, such as processing 
efficacy and big data processing. 

Models of brain function should attempt 
to integrate several and, ideally, all of 
the seven brain constraints explored by 
the team. The integration of microscopic 
and macroscopic levels is crucial to this 
endeavour. 

Future focus

The work of the MatCo project offers very 
practical application strategies for the 
future. One such application addresses 
neuroplasticity, aiming at predicting 
and explaining the reorganisation of 
cognitive functions after a brain lesion 
or deprivation. With future potential 
for neurocomputational modelling 
constrained by specific features of 
an individual’s brain, such insights 
could contribute to future planning of 
personalised therapy. 

MatCo also continues to research and 
work in areas such as verbal working 
memory in the human brain, semantic 
binding between words and referent 
objects and actions, and the process 
of concrete and abstract concepts and 
meanings. 
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