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The famous prime number theorem tells us that the number 
of primes up to 𝑥  is asymptotically equal to 𝑥/log 𝑥. In 1953, 
Piatetski-Shapiro (1953) first considered the primes of the form 
⌊𝑛𝑐⌋ for some 1 < 𝑐 < 2, which today are known as the Piatetski-
Shapiro primes.

Let ℙ be the set of primes and

ℕ𝑐 := {⌊𝑛𝑐⌋ : 𝑛 ∈ ℕ}, with 1 < 𝑐 <  2;

let 

(1) 	 ℙ𝑐 := ℙ∩ ℕ𝑐.

Piatetski-Shapiro proved that for 1 < 𝑐 < 1.1,

(2)

The range of 𝑐 has been improved significantly, and the best 
result to date is due to Rivat and Sargos (2001), who showed 
that (2) holds for 1 < 𝑐 <  2817/2426 ≈ 1.161. On the other hand, 
if one is only interested in bounding the growth rate of π𝑐(𝑥), the 
best range for 𝑐 is due to Rivat and Wu (2001), who proved that

for

Much of my research to date has been focused on investigating 
the extent to which the following two fundamental theorems of 
additive number theory can be extended to (1):

1.	 (Vinogradov’s theorem) Every sufficiently large odd integer 
can be written as a sum of three primes. This result was 
proved by Vinogradov.

2.	 (Roth’s theorem for primes) Any subset of primes with 
positive upper density contains a non-trivial 3-term 
arithmetic progression. This was established for primes by 
Green (2005).

In 1992, Balog and Friedlander (1992) first established 
Vinogradov’s theorem for Piatetski-Shapiro primes with 
1 < 𝑐 < 1.05. In 2014, Mirek (2015a) proved a Roth-type theorem 
for such primes when 1 < 𝑐 <  72/71 ≈ 1.014.

The best ranges for 𝑐 in extensions of both theorems are due to 
myself, jointly with Shanshan Du and Hao Pan (2019):

Theorem 3 (Vinogradov extension). For any 𝑐1, 𝑐2, 𝑐3 ∈ (1, 41/35), 
every sufficiently large odd integer N can be represented as

𝑁= 𝑝1 + 𝑝2 + 𝑝3,

where 𝑝𝑖 ∈ 𝑃𝑐𝒾, 1 ≤ 𝑖 ≤  3.

Theorem 4 (Roth-type extension). For any 𝑐 ∈ (1, 243/205), every 
subset of 𝐸 ⊂ ℙ𝑐 with positive upper density

contains a non-trivial 3-term arithmetic progression.

In particular, we established:

•	 Vinogradov’s extension: 1 < 𝑐  < 41/35 ≈ 1.171  
for each exponent

•	 Roth-type extension: 1 < 𝑐  < 243/205 ≈ 1.185.

This line of inquiry admits natural extensions to pointwise 
ergodic theory, which I have recently begun exploring. The 
departure point for my work was Rosenblatt and Wierdl’s (1995) 
conjecture, formulated in 1995; below, a measure-preserving 
system,

(𝑋, Σ, µ, 𝑇 ),

is a probability space equipped with a measure-preserving 
transformation,

𝑇 : 𝑋  → 𝑋,  µ(𝑇−1𝐸) =  µ(𝐸) for all 𝐸 ∈ Σ.

Conjecture 1. Suppose 		  has zero Banach density,

and that (𝑋, Σ, µ, 𝑇 ) is aperiodic measure-preserving system:

µ ({𝑥 : 𝑇 𝑛𝑥 = 𝑥 for some 𝑛 ∈  ℕ}) =  0.

Then there exists 𝑓 ∈ 𝐿1(𝑋) such that

does not converge almost everywhere.

This conjecture was disproved by Buczolich (2007). 
Subsequently, Urban and Zienkiewicz (2007) proved that for 1 
< 𝑐 <  1.001, any measure-preserving system (𝑋, Σ, µ, 𝑇 ), and any 
𝑓 ∈ 𝐿1(𝑋), the ergodic averages

converge almost everywhere. The range of 𝑐 was later improved 
to 1  <  𝑐 <  30/29 ≈ 1.034 by Mirek (2015b), which remained the 
state of the art for 12 years.
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Recently, in collaboration with Professor Krause (2025), we 
established the following theorem as a special case of a more 
general phenomenon.

Theorem 5. For any 1 < 𝑐 < 8/7 ≈ 1.1429, any measure-
preserving system (𝑋, Σ, µ, 𝑇 ), and any 𝑓 ∈ 𝐿1(𝑋), the averages 
𝑀𝑁, 𝑐𝑓 converge almost everywhere.

In the same paper, we also proved:

Theorem 6. For any 1 < 𝑐 <  2, any measure-preserving system 
(𝑋, Σ, µ, 𝑇 ), and any 𝑓 ∈ 𝐿𝑝 (𝑋) with 𝑝 > 1, the averages 𝑀𝑁, 𝑐𝑓 
converge almost everywhere.

We also expect to prove the following convergence result: 
multi-linear extensions are also present.

Theorem 7. For any measure-preserving system (𝑋, Σ, µ, 𝑇 ) and 𝑓 
∈ 𝐿𝑝(𝑋) with 𝑝 > 1, the averages

converge almost everywhere, see (2).

Back in the additive combinatorial setting, a natural future 
direction is to investigate whether ℙ𝑐 contain arbitrarily long 
arithmetic progressions. In 2019, Li and Pan established:

Theorem 8 (Li and Pan). For any 𝑚 ≥ 3 and 1 < 𝑐 < 		
the set ℙ𝑐  contains non-trivial  𝑚-term arithmetic progressions.

For 𝑚 = 3, their range 			       is significantly 
smaller than the range 1 < 𝑐 <  243/205 ≈ 1.185 in Theorem 4.

This suggests that substantial improvement may be possible.
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PROJECT SUMMARY 
In this project we investigate dynamical and 
arithmetic statistics of sequences of the 
form {⌊𝑛𝑐⌋}, for 1<c<2 as large as possible, 
as well as the statistics of the intersection 
of these sequences with the primes.
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