Arithmetic properties for sparse sequence of integers and its application in number theory, additive combinatorics and ergodic theory

Yu-Chen Sun

of primes up to x is asymptotically equal to $x/\log x$. In 1953, Piatetski-Shapiro (1953) first considered the primes of the form $\lfloor n^c \rfloor$ for some 1 < c < 2, which today are known as the *Piatetski-Shapiro primes*.

Let ℙ be the set of primes and

$$\mathbb{N}_c := \{ [n^c] : n \in \mathbb{N} \}, \text{ with } 1 < c < 2;$$

let

$$\mathbb{P}_{c} := \mathbb{P} \cap \mathbb{N}_{c}.$$

Piatetski-Shapiro proved that for 1 < c < 1.1,

(2)
$$\pi_c(x) := \sum_{\substack{p \in \mathbb{P}_c \\ p \le x^c}} 1 = (1 + o(1)) \frac{x}{c \log x}.$$

The range of c has been improved significantly, and the best result to date is due to Rivat and Sargos (2001), who showed that (2) holds for $1 < c < 2817/2426 \approx 1.161$. On the other hand, if one is only interested in bounding the growth rate of $\pi_c(x)$, the best range for c is due to Rivat and Wu (2001), who proved that

$$\pi_c(x) \ge \operatorname{Const} \cdot \frac{x}{\log x},$$

for
$$1 < c < \frac{243}{205} \approx 1.185$$
.

Much of my research to date has been focused on investigating the extent to which the following two fundamental theorems of additive number theory can be extended to (1):

- 1. **(Vinogradov's theorem)** Every sufficiently large odd integer can be written as a sum of three primes. This result was proved by Vinogradov.
- 2. (Roth's theorem for primes) Any subset of primes with positive upper density contains a non-trivial 3-term arithmetic progression. This was established for primes by Green (2005).

In 1992, Balog and Friedlander (1992) first established Vinogradov's theorem for Piatetski-Shapiro primes with 1 < c < 1.05. In 2014, Mirek (2015a) proved a **Roth-type theorem** for such primes when $1 < c < 72/71 \approx 1.014$.

The best ranges for c in extensions of both theorems are due to myself, jointly with Shanshan Du and Hao Pan (2019):

Theorem 3 (Vinogradov extension). For any c_1 , c_2 , $c_3 \in (1, 41/35)$, every sufficiently large odd integer N can be represented as

$$N = p_1 + p_2 + p_3$$

where $p_i \in P_{C_i}$, $1 \le i \le 3$.

The famous prime number theorem tells us that the number of primes up to x is asymptotically equal to $x/\log x$. In 1953, $x/\log x$ is asymptotically equal to $x/\log x$. In 1953, $x/\log x$ is asymptotically equal to $x/\log x$. In 1953, $x/\log x$ is asymptotically equal to $x/\log x$.

$$\limsup_{|I| \to \infty \text{ an interval}} \frac{|E \cap I|}{|I|} > 0$$

contains a non-trivial 3-term arithmetic progression.

In particular, we established:

- Vinogradov's extension: $1 < c < 41/35 \approx 1.171$ for each exponent
- Roth-type extension: $1 < c < 243/205 \approx 1.185$.

This line of inquiry admits natural extensions to pointwise ergodic theory, which I have recently begun exploring. The departure point for my work was Rosenblatt and Wierdl's (1995) conjecture, formulated in 1995; below, a *measure-preserving system*,

$$(X, \Sigma, \mu, T)$$

is a probability space equipped with a measure-preserving transformation.

$$T: X \to X, \ \mu(T^{-1}E) = \mu(E) \text{ for all } E \in \Sigma.$$

Conjecture 1. Suppose $\{a_n\}_{n=1}^{\infty}$ has zero Banach density,

$$\lim_{|I| \to \infty \text{ an interval}} \frac{|\{a_n\} \cap I|}{|I|} = 0,$$

and that (X, Σ, μ, T) is aperiodic measure-preserving system:

$$\mu\left(\left\{x:T^nx=x\text{ for some }n\in\mathbb{N}\right\}\right)=0.$$

Then there exists $f \in L^1(X)$ such that

$$\frac{1}{N} \sum_{n=1}^{N} T^{a_n} j$$

does not converge almost everywhere.

This conjecture was disproved by Buczolich (2007). Subsequently, Urban and Zienkiewicz (2007) proved that for 1 < c < 1.001, any measure-preserving system (X, Σ, μ, T) , and any $f \in L^1(X)$, the ergodic averages

$$M_{N,c}f = \frac{1}{N} \sum_{n \le N} T^{\lfloor n^c \rfloor} f$$

converge almost everywhere. The range of c was later improved to $1 < c < 30/29 \approx 1.034$ by Mirek (2015b), which remained the state of the art for 12 years.

Recently, in collaboration with Professor Krause (2025), we established the following theorem as a special case of a more general phenomenon.

Theorem 5. For any $1 < c < 8/7 \approx 1.1429$, any measurepreserving system (X, Σ, μ, T) , and any $f \in L^1(X)$, the averages M_{N} of converge almost everywhere.

In the same paper, we also proved:

Theorem 6. For any 1 < c < 2, any measure-preserving system (X, Σ, μ, T) , and any $f \in L^p(X)$ with p > 1, the averages M_{N} fconverge almost everywhere.

We also expect to prove the following convergence result: multi-linear extensions are also present.

Theorem 7. For any measure-preserving system (X, Σ, μ, T) and f $\in L^p(X)$ with p > 1, the averages

$$\frac{1}{\pi_c(N)} \sum_{p \in \mathbb{P}_c, p \le N^c} T^p f$$

converge almost everywhere, see (2).

Back in the additive combinatorial setting, a natural future direction is to investigate whether P contain arbitrarily long arithmetic progressions. In 2019, Li and Pan established:

Theorem 8 (Li and Pan). For any $m \ge 3$ and $1 < c < \frac{1}{1 - 2^{-2^{m^2 4^m}}}$ the set $\mathbb{P}_{\mathbb{R}}$ contains non-trivial *m*-term arithmetic progressions.

For m=3, their range $1 < c < \frac{1}{1-2^{-2359296}}$ is significantly smaller than the range $1 < c < 243/205 \approx 1.185$ in Theorem 4.

This suggests that substantial improvement may be possible.

PROJECT SUMMARY

In this project we investigate dynamical and arithmetic statistics of sequences of the form $\{|nc|\}$, for 1 < c < 2 as large as possible, as well as the statistics of the intersection of these sequences with the primes.

PROJECT LEAD

under the advisement of Kaisa Matomaki (University of Turku).

PROJECT CONTACT

Dr Yu-Chen Sun Senior Research Associate University of Bristol

gc25763@bristol.ac.uk

References

Balog, A. and Friedlander, J. (1992) 'A hybrid of theorems of Vinogradov and Piatetski-Shapiro', Pacific Journal of Mathematics, 156(1), pp. 45-62. doi: 10.2140/pjm.1992.156.45

Buczolich, Z. (2007) 'Universally L¹ good sequences with gaps tending to infinity', Acta Mathematica Hungarica, 117(1-2), pp. 91-114. doi: 10.1007/ s10474-007-7010-8.

Green, B. (2005) 'Roth's theorem in the primes', Annals of Mathematics, 161(3), pp. 1609-1636. doi: 10.4007/annals.2005.161.1609.

Krause, B. and Sun, Y. (2025) 'Quantitative convergence for sparse ergodic averages in L1', arXiv preprint, arXiv: 2504.12510.

Li, H. and Pan, H. (2019) 'The Green-Tao Theorem for Piatetski-Shapiro primes', arXiv preprint, arXiv: 1901.09372.

Mirek, M. (2015a) 'Roth's theorem in the Piatetski-Shapiro primes', Revista Matemática Iberoamericana, 31(3), pp. 617-656. doi: 10.4171/RMI/840. Mirek, M. (2015b) 'Weak type (1,1) inequalities for discrete rough maximal functions', Journal of Analysis and Mathematics, 127, pp. 303-337. doi: 10.1007/s11854-015-0032-0.

Piatetski-Shapiro, I.I. (1953) 'On the distribution of prime numbers in sequences of the form [f(n)]', Matematicheskii Sbornik, 33(2), pp. 559-566.

Rivat, J. and Sargos, P. (2001) 'Nombres premiers de la forme $\lfloor n^c \rfloor$ ', Canadian Journal of Mathematics, 53(2), pp. 414–433. doi: $\underline{10.4153/\text{CJM}-2001-021-2}$.

Rivat, J. and Wu, J. (2001) 'Prime numbers of the form[n^c]', Glasow Mathematical Journal, 43(2), pp. 237-254. doi: 10.1017/S001708950102008. Rosenblatt, J. and Wierdl, M. (1995) 'Pointwise ergodic theorems via harmonic analysis', in Petersen, K.E. and Salama, I. (eds.) Ergodic Theory and Harmonic Analysis: Proceedings of the Alexandria Conference 1993. Cambridge: Cambridge University Press, pp. 3–152.

Sun, Y. Du, S. and Pan, H. (2019) 'Vinogradov three prime theorem with Piatetski-Shapiro primes', arXiv preprint arXiv: 1912.12572.

Urban, R. and Zienkiewicz, J. (2007). 'Weak type (1,1) estimates for a class of discrete rough maximal functions', Mathematical Research Letters, 14(2), pp. 227-237. doi: 10.4310/MRL.2007.v14.n2.a6.

Co-funded by the European Union

UK Research and Innovation

FUNDING DISCLAIMER

This project has been funded by UK Research and

eandissemination.eu

170